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Bashkirov’s comments on the paper �S. Abe, Phys. Rev. E 66, 046134 �2002�� are all refuted. In addition,
it is discussed that the Rényi entropy is irrelevant to the generalization of Boltzmann-Gibbs statistical mechan-
ics for complex systems.
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In a recent comment �1�, Bashkirov has criticized the
work in Ref. �2� by considering the following three points:
the concept of the thermodynamic limit, comparison of the
values of the Tsallis entropy and the Rényi entropy, and a
possible role of the Rényi entropy in generalizing
Boltzmann-Gibbs statistical mechanics. Since Bashkirov’s
discussion seems to represent typical misunderstandings of
the issues, it may be meaningful to reply to his comments in
order to make further clarification.

First of all, Bashkirov mixes the problem of the order to
be taken for the thermodynamic limit in ordinary statistical
mechanical calculations with the order of limits in the
Lesche-stability condition �3�. Here, a statistical entropy
functional C�p� of a probability distribution �pi�i=1,2,. . .,W is
called Lesche stable if the following condition is satisfied:

�∀� � 0��∃� � 0���p − p��1 � � ⇒ 	C�p� − C�p��
Cmax

	 � �
 ,

�1�

for any value of W, where �p�i�i=1,2,. . .,W is an arbitrary defor-
mation of �pi�i=1,2,. . .,W, �A�1 the l1 norm of A, and Cmax the
maximum value of C. Specifically, one is concerned with the
case of the thermodynamic limit, W→�. As rigorously
proved in Refs. �2,3�, the Rényi entropy �4�, Sq

�R��p�= �1
−q�−1ln�i=1

W �pi�q, and the normalized Tsallis entropy �5,6�,
Sq

�NT��p�= �1−q�−1�1−1/�i=1
W �pi�q�, are not Lesche stable,

whereas the Tsallis entropy �7�, Sq
�T��p�= �1−q�−1��i=1

W �pi�q

−1�, is Lesche stable. Here, q in these expressions is the
positive entropic index, and all of the above three quantities
converge to the Boltzmann-Gibbs-Shannon entropy, S�p�=
−�i=1

W pi ln pi, in the limit q→1. Also, the unit is used, in
which Boltzmann’s constant becomes unity.

Bashkirov mentions that the thermodynamic limit, W
→�, has to be taken at the end of calculations. This is true if
the calculations are about macroscopic thermodynamic quan-
tities at strict equilibrium. However, the Lesche-stability con-
dition has nothing to do with calculations of macroscopic
thermodynamic quantities at equilibrium. Instead, it is con-
cerned with the analytic property of an entropic functional
under consideration. More precisely, it defines uniform con-
tinuity of such a functional. For physical entropy relevant to
ordinary statistical mechanics, two limits, W→� and �→
+0, may commute. However, the order, �→ +0 after W
→�, is nontrivial, in general. Such an order is actually of

central interest for studies of statistical mechanics of com-
plex systems in nonequilibrium stationary states �8,9�. There,
�→ +0 corresponds to the long-time limit, t→�, describing
relaxation of �p�i�w=1,2,. . .,W to �pi�i=1,2,. . .,W representing a
nonequilibrium stationary state. The order, t→� after W
→�, is at the heart of nonextensive statistical mechanics
�8,9�, whereas the order, W→� after t→�, is nothing but
the ordinary Boltzmann-Gibbs case. Thus, the definition in
Eq. �1� correctly reflects nontriviality of the order of the
limits. It is also connected to experimental robustness �10� of
the quantity, C. Usually, what is experimentally observed is
not C itself but the distribution of the values of a physical
quantity under consideration. Repeating the same experiment
to measure the values of the same physical quantity, an ex-
perimentalist will obtain a distribution, which may be
slightly different from that observed previously. C should not
change drastically for two slightly different distributions,
�pi�i=1,2,. . .,W and �p�i�w=1,2,. . .,W, irrespective of the value of W.
In a recent paper �11�, Lesche has further developed a dis-
cussion about the fact that the Rényi entropy cannot be re-
lated to observables.

Secondly, Bashkirov stresses the relation in Eq. �3� in Ref.
�1�. It is mathematically true but physically irrelevant, since
it is just comparing the bare values of two different quantities
of two different theories. Only comparison of values of each
individual entropy is meaningful. In addition, the quantities
in Eqs. �2� and �3� in Ref. �1� are not bounded functionals, in
general. This is precisely the reason why the divisions by
their maximum values, as in Eq. �1�, are essential.

Thirdly, it is unlikely that the use of the Rényi entropy for
generalizing Boltzmann-Gibbs statistical mechanics makes
sense. There are at least two important issues here. One is
that the microcanonical structure of the Rényi-entropy-based
theory is identical to that of Boltzmann-Gibbs-theory since
both the Boltzmann-Gibbs-Shannon entropy and the Rényi
entropy yield the same value, ln W, for the equiprobability,
which is in contrast, for example, to the corresponding value
of the Tsallis entropy, �W1−q−1� / �1−q�. Therefore, no differ-
ences appear at the level of macroscopic thermodynamics.
The other is concerned with concavity. The concavity condi-
tion

Sq
�R���p�1� + �1 − ��p�2�� 	 �Sq

�R��p�1�� + �1 − ��Sq
�R��p�2��

�0 
 � 
 1� , �2�

holds if 0�q�1, but Sq
�R��p� possesses neither concavity nor

convexity if q�1 �12�. Therefore, Sq
�R��p� with q�1 fails to
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measure the degree of lack of information �13�, showing that
it cannot be an entropy. Accordingly, one has to limit oneself
to Sq

�R��p� with 0�q�1. This, however, turns out to lead
necessary to an “opportunistic” treatment, implying a change
in the definition of the expectation value. This can be seen as
follows.

If the ordinary expectation value

�Q
 = �
i=1

W

Qipi �3�

is employed for a physical quantity �Qi�i=1,2,. . .,W, then the
maximum Rényi-entropy method, ��Sq

�R��p�−���i=1
W pi−1�

−���i=1
W Qipi− �Q
��=0 �with the Lagrange multipliers, � and

�, associated with the normalization condition and the ex-
pectation value, respectively�, yields up to the normalization
constant the following stationary distribution:

p̃i � �1 −
q − 1

q
��Qi − �Q
˜��

+

1/�q−1�

, �4�

where �a�+�max�0,a� and �Q
̃ is the value of �Q
 in Eq. �3�
calculated in terms of the stationary distribution in Eq. �4� in
a self-referential manner. On the other hand, if the
q-expectation value �14–16�

�Q
q =

�
i=1

W

Qi�pi�q

�
j=1

W

�pj�q

�5�

is used, then the corresponding stationary distribution reads

pi
* � �1 − �1 − q���Qi − �Q
q

*��+
1/�1−q�, �6�

where �Q
q
* stands for the value of �Q
q calculated in terms of

the stationary distribution in Eq. �6� itself. In Eqs. �4� and
�6�, the same symbol, �, is used for the Lagrange multipliers,
but it will not cause any confusion. Now, recall that Sq

�R��p� is
an entropy if and only if 0�q�1. Therefore, p̃i in Eq. �4�
describes an asymptotically power-law distribution of the
Zipf-Mandelbrot type, whereas pi

* in Eq. �6� is support com-
pact with the cutoff at Qi

max= �1+ �1−q���Q
q
*� / ��1−q���.

Very importantly, the distributions of both of these two types
are observed in nature �see many examples collected in the
list given at http://tsallis.cat.cbpf.br/TEMUCO.pdf�. Thus,
one concludes that, to describe the distributions of the both
types, the definition of the expectation value has to be
changed depending upon circumstances, losing the possibil-
ity of constructing a unified framework. In this respect, we
may emphasize that up to now only the Tsallis entropy can
lead to a coherent description of the distributions of the both
types mentioned above.

Finally, we also point out that the Rényi entropy is not the
one that may be relevant to nonlinear dynamical systems
prepared at the edge of chaos. The Rényi entropy never
yields the constant entropy production rate at the edge of
chaos, in contrast to the fact �17–19� that the Tsallis, gamma
�19�, 
-�20�, and quantum-group �21� entropies do.

In conclusion, I have replied to all of Bashkirov’s com-
ments on Ref. �2�, and have also discussed, even though it is
often used in the various contexts, why the Rényi entropy is
not an appropriate quantity for generalizing Boltzmann-
Gibbs statistical mechanics.
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